Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation.

نویسندگان

  • Joachim B Kunz
  • Gabriele Neu-Yilik
  • Matthias W Hentze
  • Andreas E Kulozik
  • Niels H Gehring
چکیده

The exon-junction complex (EJC) components hUpf3a and hUpf3b serve a dual function: They promote nonsense-mediated mRNA decay (NMD), and they also regulate translation efficiency. Whether these two functions are interdependent or independent of each other is unknown. We characterized the function of the hUpf3 proteins in a lambdaN/boxB-based tethering system. Despite the high degree of sequence similarity between hUpf3b and hUpf3a, hUpf3a is much less active than hUpf3b to induce NMD and to stimulate translation. We show that induction of NMD by hUpf3 proteins requires interaction with Y14, Magoh, BTZ, and eIF4AIII. The protein region that mediates this interaction and discriminates between hUpf3a and hUpf3b in NMD function is located in the C-terminal domain and fully contained within a small sequence that is highly conserved in Upf3b but not Upf3a proteins. Stimulation of translation is independent of this interaction and is determined by other regions of the hUpf3 protein, indicating the presence of different downstream pathways of hUpf3 proteins either in NMD or in translation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Upf Proteins Target an mRNA for Nonsense-Mediated Decay When Bound Downstream of a Termination Codon

Nonsense-mediated decay (NMD) rids eukaryotic cells of aberrant mRNAs containing premature termination codons. These are discriminated from true termination codons by downstream cis-elements, such as exon-exon junctions. We describe three novel human proteins involved in NMD, hUpf2, hUpf3a, and hUpf3b. While in HeLa cell extracts these proteins are complexed with hUpf1, in intact cells hUpf3a a...

متن کامل

Nonsense-mediated mRNA decay among coagulation factor genes

Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...

متن کامل

Upf1 Phosphorylation Triggers Translational Repression during Nonsense-Mediated mRNA Decay

In mammalian cells, nonsense-mediated mRNA decay (NMD) generally requires that translation terminates sufficiently upstream of a post-splicing exon junction complex (EJC) during a pioneer round of translation. The subsequent binding of Upf1 to the EJC triggers Upf1 phosphorylation. We provide evidence that phospho-Upf1 functions after nonsense codon recognition during steps that involve the tra...

متن کامل

Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover.

Several lines of evidence indicate that the processes of mRNA turnover and translation are intimately linked and that understanding this relationship is critical to elucidating the mechanism of mRNA decay. One clear example of this relationship is the observation that nonsense mutations can accelerate the decay of mRNAs in a process that we term nonsense-mediated mRNA decay. The experiments des...

متن کامل

Binary specification of nonsense codons by splicing and cytoplasmic translation.

Premature translation termination codons resulting from nonsense or frameshift mutations are common causes of genetic disorders. Complications arising from the synthesis of C-terminally truncated polypeptides can be avoided by 'nonsense-mediated decay' of the mutant mRNAs. Premature termination codons in the beta-globin mRNA cause the common recessive form of beta-thalassemia when the affected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • RNA

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2006